
Documentation
Chat GPT - Open AI -  

HTML5 Template - Algency 
Documentation by "Polar Games"

Igency
CHAT GPT Template



Thank you very much for 
purchasing my product!

Índice

If you have any questions that go beyond the scope of this help file, feel free 
to send an email to . Thank you very much!
willian@polargames.com.br

[Page 3] Creating your API key on the OpenAI website 
[Page 3] Setting up your key in the project 
[Page 4] Configuring your environment 
[Page 4] Testing the project 
[Page 5] Setting up the AI employees 
[Page 6] Important parameters: training 
[Page 7] Important parameters: temperature 
[Page 8] Important parameters: frequency_penalty / presence_penalty 
[Page 9] Project configurations 
[Pages 10 and 11] API model 
[Page 12] DALL-E 2 
[Pages 13 and 14] Text-to-speech 
[Page 15] Offensive words (badwords) 
[Page 16] Translating the project 
[Page 17] Customizing the images

Created: 03/25/2023

mailto:support@polargames.com.br


Creating your API key on the OpenAI website

Setting up your key in the project

To use the Chat GPT API in conjunction with the AI employees, you need an OpenAI API key.  
Follow the steps below to create a key: 
Access the OpenAI website and create an account. 
https://platform.openai.com/account/api-keys  

After creating your account, log in to the OpenAI platform. 
On the main page, locate the "API keys" button in the navigation menu and click on it. 
Click on "Generate API key" to create a new API key. 
Copy the generated API key and store it in a secure location.

 Open the "php" folder in the files you downloaded. 
Locate the "key.php" file inside the "php" folder. 
Open the "key.php" file using a text editor, such as Notepad. 
Paste the API key you generated on the OpenAI website into the location indicated inside the 
"key.php" file. 
Save the key.php file and your configuration will be ready to go.

https://platform.openai.com/account/api-keys%E2%80%A8


Setting up your environment

Testing the project

It's important to note that it's not possible to run the project from a folder on your computer. To test 
your project, it's important that you put it on an HTTP server with PHP 7 or higher. Additionally, SSL 
must be enabled on your server.



You can choose to put your project on a local server, such as WAMP or XAMPP, or you can host it on 
an online site with a PHP server. This will allow you to run your project without any issues and ensure 
that it works properly. 


Remember that it's important to choose a server that's compatible with your project's requirements 
and is configured correctly to avoid any potential issues. With this, you'll be able to test your project 
safely and efficiently.

After setting up your project on an HTTP server, you can test it by accessing your website address. 
From there, simply choose an AI employees from the list and send a test message to it. This will allow 
you to check if your project is working properly and if the features are operating as expected.



Configuring the AI employees

The project already comes with standard configurations for AI employees behaviors. If you want to 
modify and train a specific AI employee, you will need to access the employees.json file, located in the 
json folder. To do this, simply open the file in a text editor. You will see a structure below:


When modifying the employees.json file, it is important to change the text that comes after the JSON 
key. Below, we explain the meaning of each parameter:

"name": It is the name of the employee that will be displayed to the user. 
"image": It is the path to the employee's image, located in the standard folder for employees. 
"description": It is a third-person description of the employee. 
"welcome_message": It is the default introduction message displayed when starting a conversation 
with the employee. 
"expert": It is the employee's area of expertise. 
"training": It is the field used to train the employee. More details can be found on the following pages. 
"display_welcome_message": A boolean variable that indicates whether the welcome message should 
be displayed or not. 
"temperature": It is the degree of randomness in the responses generated by the artificial intelligence 
employee. 
"frequency_penalty": It is a penalty factor for repeated words in the responses generated by the 
artificial intelligence employee. 
"presence_penalty": It is a penalty factor for words that are not present in the text provided during the 
response generation by the artificial intelligence employee. 
"chat_minlength": It is the minimum number of characters that must be typed in the conversation. 
"chat_maxlength": It is the maximum number of characters that can be typed in the conversation. 
"max_num_chats_api": It is the maximum number of tokens that the artificial intelligence employee 
can generate in a single response. 
"API_MODEL": It is the neural network model that the AI will use. 
"google_voice": It is the Google Text-to-Speech voice model that the AI will use. 
"google_voice_lang_code": It is the code of the Google Text-to-Speech voice model that the AI will use.



Important parameters: training

On the previous page, we summarized the parameters in the employees.json file. Among them, the 
training, temperature, frequency_penalty, and presence_penalty parameters stand out, which are 
essential for the proper functioning of the project. Below, we will detail each one of them.

Training: This parameter is responsible for defining the training of the intelligent AI employee. It is the 
text that the AI employee will use to introduce itself and identify itself as an expert in a certain subject.

"training": "Your name is Logan Frost. I want you to act as a cyber security specialist. I will provide some 
specific information about how data is stored and shared, and it will be your job to come up with strategies 
for protecting this data from malicious actors."


By writing in the training field, Logan will follow the provided instructions, including the responses he 
should provide about cyber security. 


Additionally, you can also specify negations, such as instructing Logan not to respond to questions 
outside the scope of cyber security. It is possible to define the tone that Logan will use when 
responding. For example, you can direct Logan to always respond in an objective or detailed manner.  

By writing in the training field, you can define actions for the character and check their response. If you 
are not satisfied, you can modify the training field and continue testing until you get the desired result. 
Improving a character's training depends on you: write in the training field, run tests, and check if you 
have met your expectations.

For example, the cyber security expert Logan Frost has the 
following training:



Important parameters: temperature

temperature: The temperature parameter is a hyperparameter used in language generation models, 
including those available on the OpenAI platform, such as GPT-2 and GPT-3.  

This parameter controls the creativity and diversity of the text generated by the model. Basically, 
temperature affects the probability of choosing the next word when the model is generating text.  

Lower temperature values cause the model to choose the most likely words, according to the 
probability distribution learned during training, resulting in a more predictable and conservative text.  

On the other hand, higher temperature values make word choice less predictable, allowing the model 
to produce more creative and diverse text, with more variation compared to previously generated text.  

It is important to remember that a very high value for temperature can lead to incoherent or 
meaningless results, as the model may choose highly unlikely words.   

Therefore, the appropriate value for temperature should be chosen carefully, depending on the type of 
task or application in question.  

In general, we recommend temperature between 0.7. However, ideal values may vary depending on the 
model, task, and application domain, so feel free to experiment with values and test them yourself.

Through the employees.json file, it is possible to set the 
temperature individually for each employee:



Important Parameters: frequency_penalty / presence_penalty

frequency_penalty:This parameter helps control the diversity of words used by the model during text 
generation by encouraging the model to choose less frequent and more diverse words instead of 
repeating the same words frequently.  

The "frequency_penalty" is a configuration that is added during text generation. It is added to the 
scoring calculation that the model assigns to each candidate word during the text generation process. 
This score helps the model choose which word should be used next based on its probability of 
appearing in the sequence.  

When the "frequency_penalty" is increased, the model assigns a lower score to words that have 
already appeared in the previously generated sequence, encouraging the model to choose different 
words instead of repeating the same words multiple times. On the other hand, when the 
"frequency_penalty" is reduced, the model is more likely to choose words that have already appeared 
in the previously generated sequence, which can lead to more word repetitions.

presence_penalty:  
This parameter is a measure of how strongly the model should penalize the repetitive use of words 
and phrases in its output. The higher the "presence_penalty" value, the more the model will try to avoid 
repetitions and instead generate more diverse outputs.  

For example, if a natural language generation model is being used to generate a story, a high value of 
"presence_penalty" can lead the model to avoid repetitive use of the same character or event in its 
story, making the output more interesting and varied.   

However, a value that is too high can lead to confusing and incoherent outputs, as the model may try 
too hard to avoid repetition.

Both the "frequency_penalty" and "presence_penalty" parameters are used to control text generation 
in language models like GPT.  

The main difference between them is that "frequency_penalty" is used to control the frequency of 
repeated words in a generated sequence, while "presence_penalty" is used to control the presence of 
specific words in a generated sequence.



Project settings

To access the project configuration options, you need to open the config.json file located inside the 
json folder.

When modifying the config.json file, it's important that you change the text that comes after the 
JSON key. Below, we explain the meaning of each parameter:

"API_MODEL_options_available": A list of available AI models that can be used by the chatbot, along 
with a brief description of each model.

"use_text_stream": A boolean value indicating whether the chat messages should be displayed in real-
time or not.

"display_contacts_user_list": A boolean value indicating whether a list of contacts should be displayed 
in the chat interface.

"display_avatar_in_chat": A boolean value indicating whether the avatar of the chatbot should be 
displayed in the chat interface.

"display_copy_text_button_in_chat": A boolean value indicating whether a button for copying chat 
messages should be displayed in the chat interface.

"display_audio_button_answers": A boolean value indicating whether a button for audio answers 
should be displayed in the chat interface.

"display_microphone_in_chat": A boolean value indicating whether a button for using the microphone 
should be displayed in the chat interface.

"microphone_speak_lang": The language code for the language that the microphone should recognize.

"filter_badwords": A boolean value indicating whether to filter out bad words from chat messages.

"chat_history": A boolean value indicating whether to save chat history.

"chat_font_size": The font size for the chat interface.

"shuffle_character": A boolean value that indicates whether the way employees are displayed will be 
random

"dalle_img_size": The size of the image that will be generated by the DALL-E model.

"dalle_generated_img_count": The number of images that will be generated by the DALL-E model.

"dalle_img_size_available": The available image sizes for the DALL-E model.



API MODEL

We have listed the two main chat models for this project: gpt-3.5-turbo and text-davinci-003. 
Remember that the model is configured individually for each employee, in the employees.json file.

gpt-3.5-turbo: GPT-3.5 model with higher capacity and optimized for chat at 1/10 of the cost of text-
davinci-003. While faster and cheaper than Davinci, this alternative may not provide the same quality 
responses. 


text-davinci-003: Can perform any language task with better quality, longer output, and consistent 
instructions. 


The project is configured by default with the gpt-3.5-turbo model, which is faster and more economical 
in terms of token usage compared to the Davinci model. For this reason, we recommend using the 
turbo model, but if desired, it is possible to change the model in the "API_MODEL" field of the JSON 
file. It is important to remember that the responses can be quite different depending on the model 
used.

Answer using: text-davinci-003

Answer using: gpt-3.5-turbo



Answer using: gpt-3.5-turbo

Answer using: text-davinci-003

Note that the response generated by the "text-davinci-003" model was more creative than the 
response generated by gpt-3.5-turbo. This is because the gpt-3.5-turbo model works similarly to the 
original OpenAI chat, without considering emotions, while the davinci model is capable of simulating 
stories and responding in a more elaborate way to the user about a story or inventing how it is feeling. 
On the other hand, gpt-3.5-turbo is more efficient than davinci in writing codes and solving logic 
problems at a higher speed.



You can ask Logan in the training field to provide new information when asked about a certain topic, 
or simply ask him to simulate a character and improvise. You can also modify the training field to 
improve the quality of the responses.



DALL E 2

We have included the option to generate images using the DALL-E API in the chat. To use it, simply 
type the following command in the chat: /img term or word you would like to generate.   

For example: /img white cat

It is worth noting that the generated images will remain in the chat for a certain period of time, which 
may expire after a few minutes or hours.



In the config.json file, you can configure the number of images that will appear in the chat, as well as 
the size of these images. It is important to highlight that only sizes 256x256, 512x512, and 
1024x1024 are accepted.



Text to Speech

In the chat, we use the Google Text-to-Speech function, a feature that allows text to be read through 
an audio button.

In the config.json file, you can change the "display_audio_button_answers"  
parameter to show or hide the audio button in the chat.



Text to Speech

You can specify the language and voice for each employee by filling out the highlighted fields in the 
employees.json file.


It is important to remember that there is a limitation on the list of available voices for each browser. 
For example, Google Chrome has around 20 free voices, while Edge has a more extensive list. 


If you want to view the list of compatible voices in each browser, simply open the console of your 
browser (by pressing F12) and paste the function displayVoices() in the console. This will show a list 
of available voices for that browser, along with their language code.

It is possible to view all the (free) and (paid) voices on this link: 
https://cloud.google.com/text-to-speech/docs/voices

https://cloud.google.com/text-to-speech/docs/voices


Badwords

To filter the words that users will type in the chat, it is possible to use the available badwords system. 
To enable this feature, it is necessary to modify the "filter_badwords" option to true in the config.json 
file. Additionally, it is necessary to configure the offensive words in the badwords.json file, separating 
them by comma, following the current model.

The filter will be activated after the user types and sends a word. If the word is deemed inappropriate 
according to the badwords settings in the badwords.json file, an error message will be displayed. You 
can also customize the text of this message in the lang.json file.



Translating the project

It is possible to translate the entire project structure, such as button and alert text, by editing the 
lang.json file located in the json folder. Remember that it is necessary to manually translate the 
characters and their messages using the employees.json file.

In the lang.json file, you can translate the project structure. By default, we already have three 
languages configured, and each one uses a code that can be defined in the "use_lang_index" 
parameter. 


use_lang_index:0 -> The project will be translated to English 
use_lang_index:1 -> The project will be translated to Brazilian Portuguese 
use_lang_index:2 -> The project will be translated to Spanish 


It is important to remember that character translation is not done automatically and must be done 
manually in the employees.json file.



You can edit the text of a language that is being used by the "use_lang_index" or create a new 
language from scratch, adding a new JSON key at the end of the "lang.json" file, following the file 
structure.



Customizing the images

By default, we do not provide original photo 
images. We use photos from the freepik website 
by purchasing a license.   

You can use https://www.freepik.com to access 
free images or consider subscribing to a 
premium plan to use premium images (totally 
optional).  

You can also use other websites as sources to 
obtain photos.

Photos size:  

Person in header: 
570x580 
folder:header-image.png 
We also provide in the folder img/
header_assets_template the vectors and icons 
used (designed by us).
 

Hero background: 
2600x625 
folder: img/hero.jpg  

Photo of employees: 
640x700 
folder: employees


